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Abstract
Diffuse scattering around Bragg reflections was observed by anomalous x-
ray scattering in a single decagonal quasicrystal of Al72Ni18Fe10. Intensity
modulations of the diffuse scattering were measured for four incident x-ray
beam energies. Quantitative analysis of the diffuse scattering data shows the
presence of atomic short-range order (SRO) in three kinds of pair-correlation
functions: Al–Ni, Ni–Fe and Fe–Al. The SRO diffuse scattering is decomposed
into each component by self-consistent calculation. Using Metropolis Monte
Carlo simulations, the SRO diffuse scattering is calculated qualitatively using
the SRO parameters. Asymmetric distributions of the diffuse scattering were
seen along a longitudinal direction, even though the Al72Ni18Fe10 quasicrystal
has quite small mosaicity.

1. Introduction

The Al–Ni–Fe (ANF) system is well known to contain a decagonal quasicrystalline structure,
consisting of two-dimensional quasiperiodic planes stacked along the periodic decagonal
axis [1]. The quasicrystal structure in ANF is similar to the Al13Fe4 monoclinic approximant
structure [2]. High-resolution electron microscopy (HREM) investigation of Al13Fe4 [3] has
shown that it is made of pentagonal arrangements. The centers of the pentagonal atomic
columns form a pattern of squashed hexagonal tiles. Hexagonal tiling is orientated in the same
direction. The space group of the Al70Ni15Fe15 quasicrystal was determined using convergent-
beam electron diffraction [4] and found to be noncentrosymmetric P 1̄0m3. Moreover, weak
diffuse streaks were located at the (2n + 1)/c reciprocal space layers, where c is the lattice
constant in the periodic direction and n is an integer. This means that the lattice modulation is
induced by a 2c periodicity. A 2 nm columnar cluster and its arrangement in Al70Ni15Fe15 have
been observed by dark-field electron microscopy and HREM [5]. Neighboring pentagonal
clusters have opposite polarity. On the other hand, the stable Al71.6Ni23.7Fe4.7 was a highly
ordered quasicrystal, whose space group is P105/mmc [6]. By high-angle annular dark-field
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scanning transmission electron microscopy (HAADF-STEM) [7], it was proposed that three
types of 2 nm clusters exist in Al70Ni15Fe15. It was also pointed out that antiphase shifts occur
at domain boundaries. In Al71.5Ni23.5Fe5, diffuse scattering was observed in the vicinity of
Bragg reflection [8]. The anisotropic distributions of diffuse scattering were attributed to a
superposition of both thermal diffuse scattering (TDS) and Huang diffuse scattering (HDS),
where HDS is derived from an additional defect. Very recently, Yamamoto et al found
quasicrystal–approximant phase transitions in Al72Ni18Fe10 at high temperature [9].

In addition to TDS and HDS, atomic short-range order (SRO) diffuse scattering appears in
crystals and quasicrystals. The anomalous x-ray scattering technique was applied to study SRO
in Fe22.5Ni77.5 [10]. SRO in FeNi alloys is not observable with conventional x-rays, because
the SRO diffuse intensities are proportional to the difference of atomic scattering factor. When
the incident x-ray beam energy was selected properly, SRO diffuse scattering disappears by
the null Laue method (fFe = FNi). In fact, TDS contributions were estimated experimentally
by the null Laue method at 8 eV. It is also found that diffuse peaks shift drastically at each
incident x-ray energy. The anomalous x-ray scattering method was applied to an Al–Ni–Co
(ANC) decagonal quasicrystal [11]. It was shown that a pure atomic rearrangement of the
average lattice sites occurs without ‘random phason strain’ in the as-quenched sample. The
full width at half maximum (FWHM) of the Bragg reflections did not depend on |G⊥|, where
G⊥ is the reciprocal lattice vector in the perpendicular space, while G‖ is the reciprocal lattice
vector in the physical space. Furthermore, in situ observations at high temperature were carried
out using anomalous x-ray scattering in Al72Ni20Co8 [12]. It was found that an order–disorder
phase transition takes place accompanying ‘random phason strain’. For instance, it was shown
that weak ‘random phason strain’ developed gradually below Tc.

The concept of phasons was introduced theoretically in quasicrystals [13]. There are three
kinds of phasons classified as follows.

(i) ‘Random phason strain’: peak broadening of Bragg reflections is caused by nonuniform
strains. A phason freezes randomly along the equivalent directions.

(ii) ‘Phason strain’ generated by a tilt of the physical space in the high-dimensional periodic
space. Bragg reflections shift from ideal positions and the peak shifts are linked to a
quasicrystal (aperiodic)–approximant (periodic) phase transition.

(iii) ‘Phason modes’ are explained by the hydrodynamic theory. For instance, a random tiling
model [14] was proposed to explain the diffuse scattering, which contains some kind
of disorder in the long-range geometry. The shape of phasonic diffuse scattering (PDS)
depends on ‘phason modes’. As an example, the diffuse scattering studies of icosahedral
Al68.2Pd22.8Mn9 were performed using neutron diffraction [15]. Using high-energy
resolution, phonon contributions to the diffuse scattering were completely separated from
the phason contributions. The experimental results were consistent with the calculated
PDS, which is regarded as a precursor phenomenon of a quasicrystal–approximant phase
transition. In a decagonal quasicrystal (Al70Ni15Co15), anisotropic PDS was observed
accompanying the SRO diffuse scattering by anomalous x-ray scattering [16]. In addition,
‘random phason strain’ was characterized by the peak broadening on |G⊥|. Consequently,
both ‘phason modes’ and ‘random phason strain’ occurred in Al70Ni15Co15.

In this study, we show that the SRO diffuse scattering is the main contribution to diffuse
scattering in Al72Ni18Fe10. Generally speaking, the zone-centered diffuse scattering contains
the SRO diffuse scattering, TDS (thermal diffuse scattering) and PDS in a quasicrystal.
Theoretical calculated PDS distributions do not fit with the observed ones. The SRO diffuse
scattering was successfully subtracted from the total diffuse scattering by self-consistent
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calculation. Anisotropic distributions of the diffuse scattering are qualitatively explained by
using the SRO parameters in Metropolis Monte Carlo simulations.

2. Scattering theory

2.1. Diffuse scattering theory for a crystal

Let Q be the scattered wavevector, defined as Q = G + q, where G is the reciprocal lattice
vector. Several kinds of diffuse scattering are considered for conventional crystals: atomic
SRO, atomic size effect (SE) from displacements induced by chemical ordering of atoms of
disparate size, TDS from phonons and HDS from defects are the main contributions. The total
diffuse scattering is thus given by [17]

I diff = I SRO + I SE + I TDS+HDS. (1)

The SRO diffuse intensity in a binary alloy system is given by

I SRO(Q) = xAxB| fA − fB|2
∑

m

αm exp(iQ · Rm) = xAxB|� f |2α(q) (2)

where α(q) is the Fourier transform of the Warren–Cowley SRO parameters. xA is the
concentration of A atoms (xB = 1 − xA). If we put an A atom at the origin, the SRO parameter
on the mth site, αm , becomes

αm = 〈σ A
0 σ B

m 〉 − xAxB

xA(δAB − xB)
= 1 − PAB

m

xB
, α0 ≡ 1. (3)

PAB
m = 〈σ A

0 σ B
m 〉/xA is the conditional probability of a B atom on the mth site given an A atom

at the origin.
We can obtain nearly pure thermal and static quadratic and higher-order displacement

scattering, I TDS+HDS, which is proportional to the square of the average structure factor, | f̄ |2,
where | f̄ | is given by |xA fA +xB fB|. In general, the expression for the elastic diffuse scattering
from a disordered binary alloy is given by

I diff(Q) = N |�c(q)|2 × |� f − f̄ Q · A(q)|2, (4)

where �c(q) are the Fourier transforms of the concentration fluctuations and A(q) is the
vectorial coupling of the atomic displacements to the concentration. In addition, the linear
coupling between concentration and displacement terms in equation (4) is also important in
particular cases. This term is the cross term of the amplitude product that contributes to I SRO

and I TDS+HDS, and is regarded as both chemical and topological ordering. Therefore, this term,
referred to as I SE, is proportional to � f × f̄ ; the actual equation is more complicated [18]. In
general, both TDS [19] and HDS [20] are proportional to q−2. The equations are given by

I TDS ∝ kBT
|Q|2(Ci jk�gkg�)

−1

q2
, (5)

I HDS ∝ |Qi(Ci jk�gk g�)
−1 Pjk gk|2

q2
, (6)

where gi is the unit vector of qi and Pi j is the elastic dipole derived from a defect.
As mentioned earlier, a ‘null Laue’ experiment is important in order to clarify SRO

between two atomic species having a small difference in atomic number. By selecting the
incident x-ray energy so that |� f | = | fA − fB| ∼= 0, we can then estimate and remove pure
I TDS+HDS by the null Laue method and thereby obtain I SRO and I SE. This is because f̄ does
not depend much on the incident energies, while � f is very sensitive to them. In a ternary
alloy system, the SRO diffuse intensity of equation (2) is rewritten as

I SRO ∝ xAxB| fA − fB|2αAB(q) + xBxC | fB − fC |2αBC(q) + xC xA| fC − fA|2αCA(q). (7)
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2.2. Diffuse scattering theory for a decagonal quasicrystal

We focus on the phonon and phason elastic energies in a decagonal quasicrystal. Icosahedral
notation for phason softening is described in detail elsewhere [21]. In a decagonal quasicrystal,
we describe the structural fluctuations of a disordered state by introducing a phonon
displacement field, u = (u1, u2, u3), and a phason displacement field, v = (v1, v2). Phonon
displacements are influenced by phason displacements as u → u + [C−1]‖,‖C‖,⊥v, where Ĉ is
the hydrodynamic elastic matrix given by [22]

Ĉ(q‖) =
(

C‖,‖ C‖,⊥
C⊥,‖ C⊥,⊥

)
. (8)

The diffuse scattering is given by

I diff(Q‖) ∝ (
t G‖, t G⊥

)
Ĉ−1(q‖)

(
G‖
G⊥

)
∝ Fthermal + Fphason, (9)

where

Fthermal = t G‖[C−1]‖,‖G‖, (10)

Fphason = t�G⊥(C⊥,⊥ − t C‖,⊥[C−1]‖,‖C‖,⊥)−1�G⊥, (11)

with �G⊥ equal to G⊥ − t C‖,⊥[C−1]‖,‖G‖. Similarly to I TDS and I HDS, equation (9) shows a
q−2 dependence. The actual components of the C-matrix that includes the periodic direction
are expressed as

C‖,‖ = (λ+2μ)

( q2
1 q1q2 0

q2q1 q2
2 0

0 0 0

)
+ μ

( q2
2 −q1q2 0

−q2q1 q2
1 0

0 0 0

)
+ C1

( q2
3 0 0

0 q2
3 0

0 0 q2
1 + q2

2

)

+ C2

( 0 0 0
0 0 0
0 0 q2

3

)
+ C3

( 0 0 q1q3

0 0 q2q3

q3q1 q3q2 0

)

C⊥,⊥ = [K1(q
2
1 + q2

2 ) + K2q2
3 ]

(
1 0
0 1

)
, C‖,⊥ = K ′

( q2
1 − q2

2 −2q1q2

−2q2q1 q2
2 − q2

1
0 0

)
,

(12)

where parallel components are rewritten as (q‖)i → qi for simplicity. Here, λ and μ(>0) are
the conventional Lamé coefficients, C1(>0), C2(>0) and C3 are the phonon stiffness constants,
K1 and K2(>0) are the phonon stiffness constants, and K ′ is a coupling constant of the phonon–
phason mixing. For PDS calculations, the following conditions are also required:

λ + 2μ > 0, μK1 > (K ′)2, (λ + 2μ)K1 > (K ′)2. (13)

The phason elastic matrix C⊥,⊥ is isotropic for decagonal quasicrystals. However,
anisotropic distributions of the diffuse scattering are realized if the phonon–phason coupling
is taken into account.

3. Experimental details

In order to investigate the existence of diffuse streaks, we carried out x-ray diffraction
experiments on a laboratory conventional diffractometer. Mo radiation, monochromatized by
a curved highly orientated pyrolytic graphite (HOPG) (002), was used as the primary beam
(wavelength 0.071 07 nm). Oscillation photographs obtained using imaging plates (IPR-420,
Mac Science) were taken using a 2 kW x-ray generator (Rigaku).

Anomalous x-ray scattering experiments were performed on the BL-4C of the Photon
Factory at the High Energy Accelerator Research Organization in Japan. A vertically focusing
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Figure 1. |� f |2 and | f̄ |2 as a function of q (= 4π(sin θ)/λ) for the four energies.

mirror was placed in front of a Si(111) double monochromator. The specimen was mounted on
a four-circle diffractometer (Huber 5010). Air scattering was minimized by helium-filled beam
paths. X-ray fluorescence was removed by a curved HOPG (002). The incident energies were
calibrated to within 1 eV using both Ni and Fe foils. Here, we selected the following incident
energies: 7.087 keV (near K edge of Fe), 7.686 keV (near K edge of Co), 8.103 keV (� f ∼= 0)
for the ‘null Laue’ case and 8.304 keV (near K edge of Ni). Figures 1(a) and (b) show the
calculated |� f |2 between Ni and Fe and | f̄ |2 (| f̄ | = |xAl fAl +xNi fNi +xFe fFe|) at each energy,
respectively. By anomalous x-ray scattering, we can even obtain the contrast between Ni and
Fe, whose difference of atomic number is only two. The Q-resolution of this beam optics is
estimated to be around 0.01 nm−1 using a Si single crystal. Here, the unit of reciprocal space is
4π(sin θ)/λ (nm−1). In order to analyze the diffuse scattering quantitatively (electron units per
atom), we measured several integrated intensities of a standard powder sample of Ni at each
energy.

An alloy ingot with nominal composition of Al72Ni18Fe10 was prepared by melting
mixtures of pure Al (99.99%), Ni (99.99%) and Fe (99.99%) metals under an Ar atmosphere
in an arc furnace. This ingot was crushed into powder, put into an alumina crucible and then
sealed in a quartz tube. The powder sample was melted at 1423 K, slowly cooled to 1073 K at
the rate of 50 K h−1, kept at 1073 K for 1 day and then quenched in water (Tq = 1073 K). The

5
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Figure 2. Diffraction pattern of the decagonal quasicrystal Al72Ni18Fe10 using an imaging plate.
The incident beam is perpendicular to the decagonal axis (c∗-axis).

Figure 3. |G⊥| dependence of FWHM of Bragg reflections. In comparison with that of
Al70Ni15Co15 and Al72Ni20Co8, no ‘random phason strain’ was seen in Al72Ni18Fe10.

specimen was roughly rod shaped, with a length of 0.071 mm and a diameter of 0.025 mm. It
had a mosaicity smaller than 0.02 nm−1. For absorption corrections, we collected equivalent
Bragg reflections at each energy. We calculated absorption factors semi-empirically using a
numerical scheme.

4. Experimental results

Figure 2 shows an oscillation photograph of Al72Ni18Fe10 using an imaging plate. An arrow
in figure 2 indicates the c∗-axis. Apparently, no diffuse streaks were seen in (2n + 1)/2c
positions, caused by lattice modulation of 2c periodicity. In addition, sharp peak spots without
additional diffuse scattering were seen in the photograph. This suggests that the sample used
in this study is a high-quality quasicrystal. In fact, there is no |G⊥| dependence of FWHM
of Bragg reflections in Al72Ni18Fe10 as shown in figure 3. Compared with Al70Ni15Co15, it
was clear that no ‘random phason strain’ exists in the as-quenched sample. Al72Ni18Fe10 has
smaller mosaicity than Al72Ni20Co8 as a perfect quasicrystal.

6
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Figure 4. Reciprocal space perpendicular to the periodic direction of the decagonal Al72Ni18Fe10

phase. The area of the spot is proportional to the intensity of the reflection. The diffuse scattering
has been measured around the labeled reflections.

Figure 5. The observed diffuse scattering around (a) 103̄3̄0, (b) 304̄4̄0, (c) 01̄2̄2̄0, (d) 11̄3̄2̄0 and
(e) 12̄5̄4̄0 Bragg reflections at 8.103 keV. Absolute intensity is given in electron units. The open
stars present the ideal positions for the weak Bragg reflections.

Qx , Qy and Qz are set to measure the diffuse scattering three dimensionally as shown in
figure 4. Figures 5(a)–(e) show the distributions of the diffuse scattering on a quasiperiodic
plane around 103̄3̄0 (A in figure 4), 304̄4̄0 (B in figure 4), 01̄2̄2̄0 (C in figure 4), 11̄3̄2̄0
(D in figure 4) and 12̄5̄4̄0 (E in figure 4) Bragg reflections at 8.103 keV, respectively. The
quantitative diffuse intensities are corrected by measuring the standard Ni polycrystal. After
data corrections, Thomson scattering (electron units per atom) is determined as the absolute
value and the incoherent Compton scattering is subtracted using the calculated values. Numbers
in contour maps are in electron units per atom. The resolutions of each Bragg reflection
are given by the small dots in the center of the contour maps. By measurements along the
periodic direction, we found the diffuse scattering distributed only on quasiperiodic planes,
and not in the periodic direction. For instance, the correlation length is 4 nm along the
quasiperiodic direction and is 8 nm along the periodic one. Compared with Al72Ni20Co8,
the distributions of the zone-centered diffuse scattering in Al72Ni18Fe10 were anisotropic.
Nevertheless, Al72Ni18Fe10 had no ‘random phason strain’, as shown in figure 3. Furthermore,
weak Bragg reflections were shifted a little from the ideal positions, which are indicated by
the open stars in figures 5(a)–(e). Peak shifts had no |G⊥| dependence. In principle, peak
shifts, which are proportional to |G⊥| values, are caused by ‘phason strain’. In addition,

7
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Figure 6. The calculated thermal diffuse scattering around (a) 103̄3̄0, (b) 304̄4̄0, (c) 01̄2̄2̄0,
(d) 11̄3̄2̄0 and (e) 12̄5̄4̄0 Bragg reflections.

Figure 7. Theoretical phasonic diffuse scattering around 103̄3̄0 Bragg reflections using (a) K1 =
0.2 and K ′ = −0.1, (b) K1 = 0.1 and K ′ = −0.1, (c) K1 = 0.1 and K ′ = 0, (d) K1 = 0.1
and K ′ = 0.1 and (e) K1 = 0.1 and K ′ = 0.2. K1 is the phason elastic constant. Anisotropic
distributions are enhanced by the coupling constant between phonon and phason, K ′.

the distributions of the diffuse scattering around 01̄2̄2̄0 and 11̄3̄2̄0 Bragg reflections became
asymmetric along the radial direction. These imply that a static strain derived from a defect
or SE associated with SRO occurs in the as-quenched sample in spite of a high-quality
quasicrystal.

There are four kinds of diffuse scattering to explain the observed ones: TDS, PDS, HDS
and the SRO diffuse scattering with SE. Distributions of TDS are calculated by equations (10)
and (12). The calculation results on a quasiperiodic plane (q3 = 0) are shown in figures 6(a)–
(e). In the actual calculation, we use λ (= 0.5736) and μ (= 0.8845) values in Al71Ni16Co13

single quasicrystals [23]. The calculated TDS distributes along a transverse (T-) direction.
Obviously, the observed diffuse scattering was distributed along a longitudinal (L-) direction
in all contour maps as shown in figures 5(a)–(e). The calculated distributions of TDS cannot
reproduce the observed ones. Next, we investigate PDS contributions. We calculated the PDS
described by equations (11) and (12). On Qz = 0, elastic constants are reduced to λ, μ, K1

and K ′. Figures 7(a)–(e) exhibit the theoretical PDS distributions around the 103̄3̄0 Bragg
reflection satisfying the conditions in equation (13). With any combination of K1 and K ′, the
calculated PDS distributions contradict the observed ones. In principle, the diffuse scattering
derived from pure phason contributions is isotropic on a decagonal quasicrystal. A coupling
between phonon and phason can modify the distributions to become anisotropic.

Another approach to analyze the strains is to investigate the q dependence of the diffuse
scattering. In fact, the q dependence of the scattered intensity contains significant information
about lattice distortions. Theoretically, q−2 dependence is seen in TDS, HDS and PDS, which

8
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Figure 8. The scattered intensities at each incident energy versus q around the 304̄4̄0 Bragg
reflection along (a) transverse (T-) and (b) longitudinal (L-) directions. Measurement regions are
displayed in figure 5(b). Only along the L-direction, the scattered intensity shows q−4 dependence,
which is derived from the strongly distorted regions.

are given by equations (5), (6) and (11), respectively. Thus, we examine the q relationship of
the diffuse scattering along T- and L-directions, whether it obeys a power law or not. Line
scans along T- and L-directions are drawn in figure 5(b). Figure 8(a) shows q−2 decay along
T-detection around 304̄4̄0 Bragg reflection. Here, the scattered intensity at small q region
(<0.1 nm−1) is regarded as the tail of Bragg reflection. In contrast to the q−2 dependence,
q−4 decay appears only along the L-direction (figure 8(b)). q−4 dependence is an inherent
property for HDS [20]. In a crystal, strongly distorted regions provide q−4 dependence along
the radial direction, though TDS has only q−2 dependence. There are no reports associated
with q−4 dependence in a quasicrystal. The diffuse intensities along the T-direction indicated
the incident energy dependence, although the diffuse intensities along the L-direction did not
vary (figure 8(b)). For instance, the quantitative diffuse intensity at 8.103 keV provided the
minimum values as shown in figure 8(a). This is because | fNi − fFe| becomes almost zero at
8.103 keV and αNi−Fe(q) is negligible at this incident energy. If the SRO diffuse scattering of
αAl−Ni(q) and αFe−Al(q) is rather smaller than that of αNi−Fe(q), I TDS+HDS distributes mainly
at 8.103 keV. In fact, the diffuse intensity only at 8.103 keV obeyed q−2 dependence as shown
in figure 8(a).

9
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Figure 9. Three kinds of pair-correlation functions, αAl−Ni(q), αNi−Fe(q) and αFe−Al(q), in Laue
units per atom. The q-region is the longitudinal direction in the center of the 304̄4̄0 Bragg reflection.

We estimate atomic SRO quantitatively considering intensity modulations at each incident
energy. Apart from the calculated PDS, we assume that the scattered intensities consist of I SRO,
I SE and I TDS+HDS. By self-consistent calculation using the Monte Carlo (MC) method, we
compare the observed diffuse scattering with the calculated I SRO and I TDS+HDS. The calculated
log {α(q)} is described as k0 + k1q + k2q2 + k3q3 + k4q4, while the calculated I TDS+HDS is
proportional to | f̄ (Q, E)|2/q2. The convergence condition for the calculation is a reliability
factor given by R = ∑ |log(I cal) − log(I obs)|/ ∑ |log(I obs)|. Then, I TDS+HDS around 304̄4̄0
is found to be 0.2| f̄ |2/q2 along the radial direction. I SRO is obtained by subtracting the
calculated I TDS+HDS from the total diffuse scattering. Furthermore, we decomposed I SRO

into three α(q), which represent the three kinds of pair-correlation function in equation (7).
Since |� f |2 depends ultimately on the incident energies as shown in figure 1, an advantage of
|� f |2 by anomalous x-ray scattering makes it possible to separate into three α(q) analytically.
Equation (7) is rewritten as

[ I SRO(Q, E1)

I SRO(Q, E2)

I SRO(Q, E3)

]
=

[
ξAB(Q, E1) ξBC(Q, E1) ξCA(Q, E1)

ξAB(Q, E2) ξBC(Q, E2) ξCA(Q, E2)

ξAB(Q, E3) ξBC(Q, E3) ξCA(Q, E3)

][
αAB(q)

αBC(q)

αCA(q)

]
. (14)

The difference of atomic scattering factor is re-defined as ξi j(Q, En) = xi x j | fi (Q, En) −
f j (Q, En)|2. Using the inverse matrix of ξi j (Q, En) coefficients, αAl−Ni(q), αNi−Fe(q) and
αFe−Al(q) in Laue units per atom are calculated exactly at each incident energy (figure 9). The
q region in figure 9 corresponds to the L-direction in the center of the 304̄4̄0 Bragg reflection.
The inverse matrix method was valid for Al72Ni20Co8, whose diffuse shapes are so complicated
and anisotropic [24]. The classic least-square method cannot decompose the complicated SRO
diffuse scattering into the partial diffuse intensities at all. We emphasize that atomic SRO exists
in a decagonal quasicrystal and the decomposed partial diffuse intensities are asymmetric along
the radial directions due to atomic SE. In particular, atomic SE is enhanced in αAl−Ni(q) and
αFe−Al(q). In addition, SRO between transition metals, that is, αNi−Fe(q), is larger than other
pair-correlation functions.

10
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Table 1. Normalized | f̄ |2|G|2 values of Bragg reflections. These are proportional to intensities of
thermal diffuse scattering.

103̄3̄0 304̄4̄0 01̄2̄2̄0 11̄3̄2̄0 12̄5̄4̄0

| f̄ |2 113.7 64.5 176.4 129.7 81.2
|G|2 997.2 2610.8 275.6 721.6 1889.2
| f̄ |2|G|2 0.673 1 0.289 0.555 0.910

5. Monte Carlo simulations

It is quite difficult to calculate the SRO diffuse scattering at the zone center, because we
cannot obtain contributions both of TDS and HDS strictly. Nevertheless, we can estimate that
I TDS+HDS is 0.2| f̄ |2/q2 around 304̄4̄0 by the above calculations. Approximately, I TDS+HDS

is proportional to | f̄ |2|G|2/q2. Therefore, I TDS+HDS of 103̄3̄0, 01̄2̄2̄0, 11̄3̄2̄0 and 12̄5̄4̄0
Bragg reflections are smaller than that of 304̄4̄0 (table 1). Therefore, we calculate the SRO
diffuse scattering qualitatively neglecting TDS and HDS. Also, atomic SE is ignored, since
SE calculation is impossible on a quasiperiodic lattice. For simplicity, only one correlation
between Al and TM (transition metal) is introduced in the simulations using the observed data
at 8.103 keV (| fNi − fFe| ∼= 0), where αNi−Fe(q) becomes almost zero for the null Laue case.
This is a big advantage of anomalous x-ray scattering, where the simulations are treated as a
binary alloy system.

MMC (Metropolis Monte Carlo) simulations are carried out using the experimentally
obtained SRO diffuse intensities at 8.103 keV. Here, the MMC method avoids the MC
simulation being trapped in a local energy minimum [25]. The entire process is repeated over
MC steps until a ground state is achieved. Therefore, the SRO parameters are optimized by
simulated annealing. Firstly, MMC simulations on the quasiperiodic lattice were applied to
an Al72Ni20Co8 quasicrystal [24]. The quantitative analysis of atomic SRO in a quasicrystal
was carried out using the SRO diffuse scattering around superstructure reflections. It was
also found that the MMC simulations diverge easily if the simulations are carried out without
the SRO parameters. Thus, the SRO parameters were regarded as a good constraint for
the MMC simulations, although the SRO parameters are merely one-dimensional reduced
parameters. The SRO parameters obtained by the circular average in the shell are similar to
the radial distribution function in liquids or amorphous materials. Exponential decay of the
SRO parameter as a function of atomic distance represents the correlation length.

In this study, we apply the MMC simulations to the zone-centered diffuse scattering for the
first time. The MMC simulations are performed on the Qz = 0 plane. Thus, two-dimensional
quasiperiodic lattices (z = 1/4, 3/4) are not distinguished from each other. Atomic positions
are provided as shown in figures 10(a) and (b). Occupation domains in figures 10(c) and (d)
can generate two kinds of columnar clusters. The closed and open circles reveal atoms at
z = 1/4 and z = 3/4, respectively. The circles in figures 10(a) and (b) indicate 2 nm diameter
for comparison. Two kinds of clusters are similar to the images observed in Al70Ni15Fe15 by
HAADF-STEM [7]. In the MMC simulations, an Al atom is put on the origin and is fixed over
the MC steps. The range of radius in the mth shell, Rm , is up to 6.0 nm. Total lattice sites of
TM atoms are 865. The selected sites are reduced to 47 shells along the radial direction. Data
are collected for 5 × 105 MC steps.

The detailed algorithm was described in previous studies [24, 26]. The MC simulations
are divided into four steps. (i) Before MMC simulations, all α(Rm) values are set to be
zero. This means that an initial atomic arrangement is completely random. (ii) The SRO
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Figure 10. Two kinds of 2 nm diameter columnar cluster: (a) a star-type cluster; (b) a decagon-type
cluster. Two circles exhibit 2 nm diameter. The closed and open circles reveal atoms at z = 1/4
and z = 3/4, respectively. The occupation domains are located at (a) (1/5, 1/5, 1/5, 1/5, 1/4) and
(b) (2/5, 2/5, 2/5, 2/5, 1/4) in the five-dimensional decagonal lattice, respectively.

parameters in the mth shell are provided randomly at every MC cycle. (iii) Using randomly
generated α(Rm) in the mth shell, the SRO diffuse scattering is calculated by equation (2).
(iv) The calculated diffuse intensity, αcal(q), is compared with the observed diffuse scattering,
αobs(q), at 8.103 keV. The reliability factor (R-factor) is introduced to investigate the matching
factor between αcal(q) and αobs(q). If the R-factor during a present MC cycle is smaller than
that of the previous one, the generated α(Rm) in this cycle is replaced by the previous one.
Consequently, the SRO parameter for better matching is determined by the R-factor at the MC
cycles. In step (iv), one MC cycle finishes. Back to step (ii), the next MC cycle starts. The
R-factor is expressed by

R =
∑ |αcal(q) − αobs(q)|

|αobs(q)| . (15)

12



J. Phys.: Condens. Matter 19 (2007) 466201 H Abe et al

Figure 11. The simulated SRO diffuse scattering around (a) 103̄3̄0, (b) 304̄4̄0, (c) 01̄2̄2̄0, (d) 11̄3̄2̄0
and (e) 12̄5̄4̄0 Bragg reflections by the Metropolis Monte Carlo method. In the simulations, the
observed SRO diffuse scattering at 8.103 keV and SRO parameters are used.

Figure 12. The SRO parameters of an Al–transition metal pair are optimized qualitatively by the
Metropolis Monte Carlo method.

Figures 11(a)–(e) show the MMC simulation results. Without considering TDS, HDS and
SE, the R-factor remains 30%. Even though the above rough assumptions are considered in
the simulation, the calculated distributions of the SRO diffuse scattering almost coincide with
the observed ones. At the same time, the SRO parameters are also optimized qualitatively by
the MMC simulations. α(Rm) of an Al–TM pair is shown in figure 12. α(Rm) values are
normalized using the relation α(0) ≡ 1. Without using the above relation, the inverse Fourier
transform of α(q) over the whole reciprocal space should be required in order to obtain the
SRO parameters. This is because a quasicrystal has no first Brillouin zone.

6. Remarks

The anisotropic distributions of the observed diffuse scattering in the as-quenched Al72Ni18Fe10

quasicrystal are not reproduced by the theoretical PDS calculations, which are described by
‘phason modes’. We show that the anisotropy originates from the atomic SRO by (i) intensity
modulations in anomalous x-ray scattering, (ii) SRO decomposition into three atomic pairs
and (iii) MMC simulations using the SRO parameters. In (ii), the SRO between Ni and Fe,
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αNi−Fe(q), is the largest among the atomic pairs. The observed diffuse intensities along the T-
direction were minimum at 8.103 keV (| fNi− fFe| ∼= 0), since the largest αNi−Fe(q) contribution
disappeared at this incident energy. The decomposed SRO diffuse scatterings distribute
asymmetrically along the L-direction. This is caused by atomic SE. In (iii), SRO between
Al and TM can reproduce the anisotropic distributions qualitatively by the MMC simulations.
MMC simulations are applied to the zone-centered diffuse scattering in a quasicrystal for the
first time. This is the first step to analyze a disordered state in a complex material. The SRO
parameters are regarded as a good constraint in the simulations. Without them, the simulations
diverge quickly.

The experimental results about lattice distortions are too complex to be systematically
explained. q−4 dependence of the diffuse scattering along the L-direction remains unclear and
has to date no theoretical explanation. The diffuse scattering is strongly dependent on strains
such as SE or lattice distortions.
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